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A road map
Two components of econometrics:

1 Identification
2 Estimation, inference

Model

Identifying assumptions ⇓ ⇑ (1) Identification

Population distribution of observable variables

Sampling ⇓ ⇑ (2) Estimation, Inference

Observations

Model: underlying structure that details relationships between variables
(these could be causal relationships, based on some definition of causality).

Identifying assumptions: further assumptions about the joint distribution of
variables.
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A road map

1 Identification:
I Learning about underlying structures (e.g. a causal effect) from a

population distribution (e.g. an expectation)
I What could one learn from “ideal” data? (aka, if we have an infinitely

large sample/the population data/if we know the distribution)
I To “identify” (1): Take an object from the underlying structure (e.g. a

causal effect) → can one write it as a function of the moments (e.g.
expectation, variance) of the distribution of the data, that is, of the
distribution of variables that one can get a sample from?

I What these moments can identify depends on model’s assumptions and
other identifying assumptions

I To “identify” (2): how do we back out parameters of a structural
object (aka, a model parameter) given knowledge of the population
joint distribution of observable variables?

2 Estimation, inference:
I Learning about a population distribution from a finite number of

observations.
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More formally (as seen in Lecture 1):

Model: {F (θ) : θ ∈ Θ}

Identifying assumptions ⇓ ⇑ (1) Identification of θ

Population distribution of observable variables: D ∼ F

θ is point-identified (based on observing D) if the mapping θ → F (θ) is
one-to-one. In other words, if for every possible distribution F for D,
θ ∈ Θ : F (θ) = F} contains at most one element.
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Simple example: Potential Outcomes Model
(with binary treatment)

Model: how a certain amount of T affects outcome Y for individual i .

Yi = Yi (Ti ) =

{
Yi (0) if Ti = 0

Yi (1) if Ti = 1

Can think as: Yi = Yi (Ti ) ≡ h(Ti ,Ui ), where Ui = (Yi (0),Yi (1)) captures all
other determinants of Yi .

Implicitly imposes assumptions “SUTVA”:

Potential outcomes for any unit do not vary with the treatments
assigned to other units

No hidden versions of the treatment (i.e., no hidden quality
differences in treatment that is missed by the treatment measure T )
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Simple example: Potential Outcomes Model

Define “causal effect” or “treatment effect” (TE) for individual i as:

TEi ≡ Yi (1)− Yi (0)

Note 1: “causality” defined in terms of “potential outcomes”
Note 2: TE may be heterogeneous!
Note 3: Based on the model, observed outcome is:

Yi = Yi (1)Ti + Yi (0)(1− Ti )

Yi = Yi (0)︸ ︷︷ ︸
Baseline

+ [Yi (1)− Yi (0)]︸ ︷︷ ︸
Causal effect

Ti

Define “average treatment effect” (ATE) as:

ATE ≡ E [Yi (1)− Yi (0)]

⇒ TE and ATE are examples of structural objects that we may wish to
identify.
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Simple example: Potential Outcomes Model
Identifying assumptions: how is treatment assigned?
(In other words, how do Yi (1) and Yi (0) relate to Ti ?)

Examples:

1) T is randomly assigned: {Yi (1),Yi (0)} ⊥ Ti

2) T is not randomly assigned: {Yi (1),Yi (0)} 6⊥ Ti

3) T is not randomly assigned but there is random assignment of an
instrument Z : {Yi (1),Yi (0),Ti (1),Ti (0)} ⊥ Zi

4) T is randomly assigned conditional on a set of observable
characteristics X : {Yi (1),Yi (0)} ⊥ Ti | Xi

Model with identifying assumptions lead to data: Di = (Yi ,Ti ) (or
Di = (Yi ,Ti ,Zi ), or Di = (Yi ,Ti ,Xi ))

Key idea: we don’t observe both Yi (0) and Yi (1). The outcome that we observe

(Yi ) is one or the other depending on whether treatment was assigned to i

(Ti = 1) or not (Ti = 0). Hence, we don’t observe TE nor ATE.
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Simple example: Potential Outcomes Model

Identification. Example: how can we write ATE (which we do not
observe) as a function of moments of the distribution of Di (which we do
observe)? In other words, can we (point) identify ATE?

1) If random assignment of T :

ATE ≡ E [Yi (1)− Yi (0)]

= E [Yi (1)]− E [Yi (0)]

=∗ E [Yi (1)|Ti = 1]− E [Yi (0)|Ti = 0]

= E [Yi |Ti = 1]− E [Yi |Ti = 0]

Note 1: * uses identifying assumption of independence {Yi (1),Yi (0)} ⊥ Ti . The
trick is to know what value of Ti to condition on.

Note 2: E [Yi |Ti ] can be estimated from data since both Yi and Ti are observed.
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Simple example: Potential Outcomes Model
A brief disgression back to ECON 2120...

Conditional expectation function (CEF):

E [Yi |Ti ] = argmin
m(Ti )

E [(Yi −m(Ti ))2]

E [m(Ti )(Yi − E [Yi |Ti ])] = 0 ∀ m(.)

(i.e, minimize over all possible functions m(Ti ); CEF is orthogonal projection over
space of all functions m(.))

Best linear predictor (BLP):

E∗[Yi |Ti ] ≡ T ′i β = T ′i × argmin
b

E [(Yi − T ′i b)2]

E [l(Ti )(Yi − T ′i β)] = 0 ∀ l(.) linear

(i.e, minimize over linear functions of Ti ; BLP is orthogonal projection over space
of linear functions l(.))
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Simple example: Potential Outcomes Model
Note: In 2120 you called the CEF the “regression function”. If you have read Mostly Harmless

Econometrics, the BLP is called the “Population Regression Function”...yes, I know, very

confusing.

A useful relationship between CEF and BLP to remember:

If CEF is a linear function, then it coincides with the BLP

Examples of cases when CEF is linear:
I If (Y ,T ) has a multivariate normal distribution, then Y |T has a

normal distribution with E [Y |T ] linear in T(
Z1

Z2

)
∼ N

((
µ1

µ2

)
,

(
σ11 σ12

σ21 σ22

))
Z1|Z2 ∼ N(µ1 − σ12σ

−1
22 (Z2 − µ2)︸ ︷︷ ︸

≡E [Z1|Z2]

, σ11 − σ12σ
−1
22 σ21)

I If T is discrete (CEF is linear in T if T is dummy, or it is linear in
appropriately defined transformations of T if T not dummy).
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Simple example: Potential Outcomes Model

Example: Ti binary.

CEF: E [Yi |Ti ] = E [Yi |Ti = 1]I(Ti =1) + E [Yi |Ti = 0]I(Ti =0)

= E [Yi |Ti = 1]Ti + E [Yi |Ti = 0](1− Ti )

= E [Yi |Ti = 0]︸ ︷︷ ︸
≡δ0

+ (E [Yi |Ti = 1]− E [Yi |Ti = 0])︸ ︷︷ ︸
≡δ1

Ti

BLP: E ∗[Yi |1,Ti ] = β0 + β1Ti

β0 = E [Yi ]− β1E [Ti ]

β1 =
Cov(Yi ,Ti )

Var(Ti )
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Simple example: Potential Outcomes Model

Exercise: show that δ1 = β1 and δ0 = β0.

β1 =
Cov(Yi ,Ti )

Var(Ti )

=
E [YiTi ]− E [Yi ]E [Ti ]

E [T 2
i ]− E [Ti ]2

=
E [E [YiTi |Ti ]]− E [E [Yi |Ti ]]E [Ti ]

E [T 2
i ]− E [Ti ]2

=
(E [YiTi |Ti = 1]P(Ti = 1) + E [YiTi |Ti = 0]P(Ti = 0))− E [E [Yi |Ti ]]E [Ti ]

E [T 2
i ]− E [Ti ]2

=
E [Yi |Ti = 1]E [Ti ]− (E [Yi |Ti = 1]E [Ti ] + E [Yi |Ti = 0](1− E [Ti ]))E [Ti ]

E [T 2
i ]− E [Ti ]2

=
E [Yi |Ti = 1](E [Ti ]− E [T 2

i ])− E [Yi |Ti = 0](E [Ti ]− E [T 2
i ])

E [T 2
i ]− E [Ti ]2

= E [Yi |Ti = 1]− E [Yi |Ti = 0]
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Simple example: Potential Outcomes Model
Example: T ∈ {t1, ..., tK}. Define Xk = I(T =tk ) (one dummy per value
that T can take).

CEF: E [Y |T ] = E [Y |T = t1]I(T =t1) + ...+ E [Y |T = tK ]I(T =tK )

= E [Y |T = t1]X1 + ...+ E [Y |T = tK ]XK

So we conclude the CEF is linear in X1, ...,XK . Then:

E [Y |T ] = E ∗[Y |X1, ...,XK ]

Note 1: T is a particular case of this one in which T ∈ {0, 1} so we have
X1 = I(T =0) = (1− T ) and X2 = I(T =1) = T .

Note 2: if more than one regressor (say {T1, ...,TK}), define a dummy for
every possible combination of values that the set of regressors can take.

...now let’s go back to ECON 2140.
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Simple example: Potential Outcomes Model
Exercise: show that, under random assignment of T , one can also point
identify (in addition to ATE):

the average treatment effect on the treated (ATET)

ATET ≡ E [Yi (1)− Yi (0)|Ti = 1]

= E [Yi (1)|Ti = 1]− E [Yi (0)|Ti = 1]

= E [Yi (1)|Ti = 1]− E [Yi (0)|Ti = 0]

= E [Yi |Ti = 1]− E [Yi |Ti = 0] = ATE

the average treatment effect on the untreated (ATEU)

ATEU ≡ E [Yi (1)− Yi (0)|Ti = 0]

= E [Yi (1)|Ti = 0]− E [Yi (0)|Ti = 0]

= E [Yi (1)|Ti = 1]− E [Yi (0)|Ti = 0]

= E [Yi |Ti = 1]− E [Yi |Ti = 0] = ATE

the conditional average treatment effect (CATE)
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Simple example: Potential Outcomes Model
Exercise: show that, under random assignment of T , one can also point
identify (in addition to ATE):

the marginal distribution of potential outcomes Y (0) and of Y (1)

FY (0)(y) = P(Yi (0) ≤ y)︸ ︷︷ ︸
This is the dist of sth

you don’t observe

= P(Yi (0) ≤ y |Ti = 0) = P(Yi ≤ y |Ti = 0)︸ ︷︷ ︸
This is the dist of sth

you do observe

FY (1)(y) = P(Yi (1) ≤ y) = P(Yi (1) ≤ y |Ti = 1) = P(Yi ≤ y |Ti = 1)

Example: compare fraction of poor people when treatment is
assigned vs fraction of poor people when treatment is not assigned.

the quantile treatment effect (QTE)

F−1
Y (1)(τ) = inf {y : P(Yi (1) ≤ y) ≥ τ} = inf {y : P(Yi ≤ y |Ti = 1) ≥ τ}

F−1
Y (0)(τ) = inf {y : P(Yi (0) ≤ y) ≥ τ} = inf {y : P(Yi ≤ y |Ti = 0) ≥ τ}

Example: compare the median person that is treated with the
median person that is not treated.
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Simple example: Potential Outcomes Model

Isaiah’s remark: identifying the treatment effect over the distribution of
outcomes (FY (1)(y)− FY (0)(y); F−1

Y (1)(τ)− F−1
Y (0)(τ)) is different than

identifying the distribution of the treatment effect (FY (1)−Y (0)(y);

F−1
Y (1)−Y (0)(τ)).

So far, we have only shown point identification of the mean of
FY (1)−Y (0)(y) = P(Yi (1)− Yi (0) ≤ y) (aka, the ATE). Can we do more?

Exercise: Problem Set 1, Problem 2 - Find upper and lower bounds on
FY (1)−Y (0)(y)

Note: next step is to find estimates for the expectations and probabilities that

identify the causal objects of interest. Useful trick for probabilities: remember

P(Yi ≤ y) = E [I(Yi≤y)].
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Simple example: Potential Outcomes Model

Identification. (Cont.)

2) If T not randomly assigned:

E [Yi |Ti = 1]− E [Yi |Ti = 0] no longer identifies ATE

= E [Yi (1)|Ti = 1]− E [Yi (0)|Ti = 0]

= E [Yi (1)|Ti = 1]− E [Yi (0)|Ti = 0]+E [Yi (0)|Ti = 1]− E [Yi (0)|Ti = 1]

= E [Yi (1)− Yi (0)|Ti = 1]︸ ︷︷ ︸
ATET

+E [Yi (0)|Ti = 1]− E [Yi (0)|Ti = 0]︸ ︷︷ ︸
Selection Bias

Example: suppose treatment is “to be hospitalized” and outcome is “health”. Selection bias is the difference in average
“baseline” health (Y (0)) between those who are and those who aren’t hospitalized. If the sick are more likely than the healthy
to get treatment, then those who are hospitalized have worse baseline values of health (i.e., of Y (0)), making selection bias
negative so that E [Yi |Ti = 1]− E [Yi |Ti = 0] understates the causal effect of treatment on treated.

In other words, E [Yi |Ti = 1]− E [Yi |Ti = 0] is not causal unless we
impose certain identifying assumptions.
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Simple example: Potential Outcomes Model
Exercise. Provide the smallest possible bounds on ATE when potential
outcomes can take on only two values, 0 and 1. (Seen in ECON 2120).

We know that Yi (1), Yi (0) ∈ {0, 1}. So −1 ≤ Yi (1)− Yi (0) ≤ 1⇒
length of this interval is 2. Can we do better (aka, tighter) for the mean of
Yi (1)− Yi (0) (aka, ATE)? Yes!

Show:

E [Yi (1)|Ti = 1]P(Ti = 1)︸ ︷︷ ︸
when P(Yi (1) = 1|Ti = 0) = 0

≤ E [Yi (1)] ≤ E [Yi (1)|Ti = 1]P(Ti = 1) + P(Ti = 0)︸ ︷︷ ︸
when P(Yi (1) = 1|Ti = 0) = 1

E [Yi (1)] = E [E [Yi (1)|Ti ]] =

= E [Yi (1)|Ti = 1]︸ ︷︷ ︸
indentified

P(Ti = 1)︸ ︷︷ ︸
identified

+E [Yi (1)|Ti = 0]︸ ︷︷ ︸
not identified

P(Ti = 0)︸ ︷︷ ︸
identified

= E [Yi (1)|Ti = 1]︸ ︷︷ ︸
indentified

P(Ti = 1)︸ ︷︷ ︸
identified

+P(Yi (1) = 1|Ti = 0)︸ ︷︷ ︸
∈[0,1]

P(Ti = 0)︸ ︷︷ ︸
identified
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Simple example: Potential Outcomes Model

Similarly:

E [Yi (0)|Ti = 0]P(Ti = 0)︸ ︷︷ ︸
when P(Yi (0) = 1|Ti = 1) = 0

≤ E [Yi (0)] ≤ E [Yi (0)|Ti = 0]P(Ti = 0) + P(Ti = 1)︸ ︷︷ ︸
when P(Yi (0) = 1|Ti = 1) = 1

Bounds on ATE are then:

E [Yi (1)− Yi (0)] ≤ EH [Yi (1)]− EL[Yi (0)] =

= E [Yi (1)|Ti = 1]P(Ti = 1) + P(Ti = 0)− E [Yi (0)|Ti = 0]P(Ti = 0)

E [Yi (1)− Yi (0)] ≥ EL[Yi (1)]− EH [Yi (0)] =

= E [Yi (1)|Ti = 1]P(Ti = 1)− E [Yi (0)|Ti = 0]P(Ti = 0)− P(Ti = 1)

Length of this interval is 1!

Called “worst-case” bounds because we are under assumption that T is not

randomly assigned and we don’t know anything more.
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Simple example: Potential Outcomes Model

Identification. (Cont.)

3) If T not randomly assigned but there’s a randomly assigned
instrument that affects treatment.

1 Could simply define Zi to be the treatment (e.g. “assignment to
treatment” is the treatment).
⇒ Goes back to case 1, where Zi is taken to be Ti and is randomly
assigned.
⇒ TE called an “intent” to treat effect.

2 Zi is an instrument (e.g. “assignment to treatment”) and we stick to
identifying causal objects of the treatment Ti .
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Simple example: Potential Outcomes Model

Additions to model: random instrument Zi ∈ {0, 1}

Ti = Ti (Zi ) =

{
Ti (0) if Zi = 0

Ti (1) if Zi = 1

Implicitly imposes:

SUTVA: treatment of i is not affected by the instrument values of
other units.

Exclusion restriction: Zi does not affect Yi directly. That is, we still
have that observed outcome is Yi = Yi (1)Ti + Yi (0)(1− Ti ).

Note: treatment can be written:

Ti = Ti (1)Zi + Ti (0)(1− Zi )
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Simple example: Potential Outcomes Model

Example: Angrist (1990).

T : military service → not random assignment

Z : draft eligibility → random assignment

Identifying assumptions:

Random assignment/independence: {Yi (1),Yi (0),Ti (1),Ti (0)} ⊥ Zi

Monotonicity/no defiers: Ti (1) ≥ Ti (0)

Relevance/first stage: P(Ti (1) 6= Ti (0)) > 0 (aka, instruments are
“strong”, meaning the instrument affects treatment)

Note: 4 possible combinations of (Ti (0),Ti (1)):

1 Compliers: (Ti (0) = 0,Ti (1) = 1)⇒ Ti (1) > Ti (0)

2 Always takers: (Ti (0) = 1,Ti (1) = 1)⇒ Ti (1) = Ti (0)

3 Never takers: (Ti (0) = 0,Ti (1) = 0)⇒ Ti (1) = Ti (0)

4 Defiers: (Ti (0) = 1,Ti (1) = 0)⇒ Ti (1) < Ti (0)

Giselle Montamat Causality and the Potential Outcomes Model 22 / 44



Simple example: Potential Outcomes Model
Exercise: show that the relevance assumption can be checked with the data (aka,
identify P(Ti (1) 6= Ti (0)) > 0).

Monotonicity implies: P(Ti (1) 6= Ti (0)) > 0⇔ P(Ti (1) > Ti (0)) > 0⇔
P(Ti (1)− Ti (0) = 1) > 0⇔ E [Ti (1)− Ti (0)] > 0⇔ E [Ti (1)] > E [Ti (0)]

Independence implies: E [Ti (1)] > E [Ti (0)]⇔ E [Ti (1)|Zi = 1] > E [Ti (0)|Zi =
0]⇔ E [Ti |Zi = 1]− E [Ti |Zi = 0] > 0

Exercise: show that Cov(Ti ,Zi ) > 0⇔ E [Ti |Zi = 1]− E [Ti |Zi = 0] > 0

Cov(Ti ,Zi ) > 0

E [Ti Zi ]− E [Ti ]E [Zi ] > 0

E [E [Ti Zi |Zi ]]− E [E [Ti |Zi ]]E [Zi ] > 0

E [Ti |Zi = 1]P(Zi = 1)− (E [Ti |Zi = 1]P(Zi = 1) + E [Ti |Zi = 0]P(Zi = 0)) E [Zi ] > 0

E [Ti |Zi = 1]E [Zi ]− (E [Ti |Zi = 1]E [Zi ] + E [Ti |Zi = 0](1− E [Zi ])) E [Zi ] > 0

E [Ti |Zi = 1]− (E [Ti |Zi = 1]E [Zi ] + E [Ti |Zi = 0](1− E [Zi ])) > 0

E [Ti |Zi = 1](1− E [Zi ])− E [Ti |Zi = 0](1− E [Zi ]) > 0

E [Ti |Zi = 1]− E [Ti |Zi = 0] > 0
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Simple example: Potential Outcomes Model

Define “local average treatment effect” (LATE) as:

LATE ≡ E [Yi (1)− Yi (0)|Ti (1) > Ti (0)]

Note: this is an average treatment effect for a “local” group, namely, the
compliers.

⇒ LATE is a structural object that we can identify.
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Simple example: Potential Outcomes Model
Exercise: show that LATE is identified by Cov(Yi ,Zi )

Cov(Yi ,Ti )

Cov(Yi , Zi )

Cov(Yi ,Ti )
=

E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Ti |Zi = 1]− E [Ti |Zi = 0]

=∗ E [Yi (1)Ti + Yi (0)(1− Ti )|Zi = 1]− E [Yi (1)Ti + Yi (0)(1− Ti )|Zi = 0]

E [Ti |Zi = 1]− E [Ti |Zi = 0]

=
E [Yi (1)Ti (1) + Yi (0)(1− Ti (1))|Zi = 1]− E [Yi (1)Ti (0) + Yi (0)(1− Ti (0))|Zi = 0]

E [Ti (1)|Zi = 1]− E [Ti (0)|Zi = 0]

=∗∗ E [Yi (1)Ti (1) + Yi (0)(1− Ti (1))]− E [Yi (1)Ti (0) + Yi (0)(1− Ti (0))]

E [Ti (1)]− E [Ti (0)]

=
E [(Yi (1)− Yi (0))(Ti (1)− Ti (0))]

E [Ti (1)− Ti (0)]

=
E [E [(Yi (1)− Yi (0))(Ti (1)− Ti (0))|Ti (1)− Ti (0)]]

E [Ti (1)− Ti (0)]

=∗∗∗ E [Yi (1)− Yi (0)|Ti (1)− Ti (0) = 1]P(Ti (1)− Ti (0) = 1)

P(Ti (1)− Ti (0) = 1)

= E [Yi (1)− Yi (0)|Ti (1) > Ti (0)]

Note: ∗ uses exclusion restriction, ∗∗ uses random assignment of instrument, ∗∗∗ uses no

defiers; the denominator E [Ti (1)− Ti (0)] is different from 0 because of relevance.
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Simple example: Potential Outcomes Model

Note: we ruled out defiers by assumption (monotonicity) and we were able
to identify a causal effect for compliers. We can’t identify who is or not a
complier, however, we can identify features of the distribution of covariates
for compliers, as in the following exercise.

Exercise (practice at home): show that E [g(Xi )|Ti (1) > Ti (0)] is
identified by:

E [g(Xi )|Ti (1) > Ti (0)] =
E [g(Xi )Ti |Zi = 1]− E [g(Xi )Ti |Zi = 0]

E [Ti |Zi = 1]− E [Ti |Zi = 0]

Exercise (practice at home): show that, under random assignment of
instrument Z , we can identify:

the local average treatment effect conditional on covariates (CLATE)

the marginal distribution of potential outcomes for compliers
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Simple example: Potential Outcomes Model

Summing up, in this example:

A causal relationship describes what would happen to a given i in a
hypothetical comparison of two different scenarios (one is a
counterfactual).

Identification: identify an average causal effect (a structural object)
by a difference in expectations / a ratio of covariances (of observed
variables) if we have a randomized experiment (of the treatment / of
an instrument).

Estimation: estimate expectations using sample means.
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Other examples on identification

From Lecture 1:

I Linear regression model
Model: Yi = X ′i β + εi ; E [εi |Xi ] = 0
Data: (Xi ,Yi )
Structural object to identify: β
Identifying assumption: E [XiX

′
i ] has full rank (no multicollinearity)

Result: β = E [XiX
′
i ]−1E [XiY

′
i ]

I Binary choice model - Manski (1975)
Model: Yi = 1{X ′i β + εi > 0} ; Med(εi |Xi ) = 0
Data: (Xi ,Yi ) (observed values of Xi don’t include x∗)
Structural objects to identify: β

||β|| ; E [Yi |Xi = x∗]

Identifying assumptions:
-E [XiX

′
i ] has full rank (no multicollinearity);

-P(0 < E [Yi |Xi ] < 1) = 1;
-at least one element Xi,j with support equal to R

Result: can identify β
||β|| but not E [Yi |Xi = x∗] (can only say if Q 1

2 )
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Other examples on identification

From Problem Set 1:

I Problem 1: Measurement Error
Model: Yi = β1 + β2Wi + εi ; E [Xiεi ] = 0 ; Xi = [1,Wi ]

′

Data: (X ∗i ,Yi ) with X ∗i = Xi + ηi :
Structural object to identify: β
Identifying assumptions:

-ηi = [0, ηi,2]′ (no measurement error in constant);
-E [Xiη

′
i ] = 0;

-E [ηiεi ] = 0
Results:

-β2 not identified: show an example in which a given distribution
of observables can be associated to two different values of β2

(pick a normal because all information is summarized in mean
and variance of (X ∗i ,Yi ))
-sign(β2) is identified
-can identify a lower bound for |β2|
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Other examples on identification

From Problem Set 1:

I Problem 1: Measurement Error

β∗2 =
Cov(W ∗i ,Yi )

Var(W ∗i )
=

Var(Wi )

Var(Wi ) + Var(ηi,2)
β2

Conclude:
F Var(Wi )

Var(Wi )+Var(ηi,2)
≥ 0⇒ sign(β2) = sign(β∗2 )

F 0 ≤ Var(Wi )
Var(Wi )+Var(ηi,2)

≤ 1⇒ |β2| ≥ |β∗2 |
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Recap

Model: Yi = h(Ti ,Ui )
→ Structural object, e.g.: ATE ≡ E [h(t2,Ui )− h(t1,Ui )]

Identification problem:
→ How do we back out ATE (or other causal objects) given knowledge of
the population distribution of observable variables Di ?
→ What assumptions are needed? (identifying assumptions)

Two types of exercises:

1 I have this object from the pop distribution ⇒ what does it identify under
such and such assumptions? Example: Problem Set 2, exercise 1.

2 I have this object that I wish to identify ⇒ what object from the pop
distribution can identify it given such and such assumptions?

Estimation/inference problem:
→ How to come up with estimates/tests of these objects using sampled
data set?
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Recap: Identification problem - two main cases

1 Ti is randomly assigned, so Ui can be seen as “pre-treatment” personal
characteristics for i ⇒ Ui ⊥ Ti (usually with experimental data)

E [h(t,Ui )] = E [h(t,Ui )|Ti = t] = E [Yi |Ti = t]

ATE = E [Yi |Ti = t2]− E [Yi |Ti = t1]

(See Section 1, 1))

2 Ti is not randomly assigned, aka, there is “selection”: people with Ti = t1

have systematically different Ui than people with Ti = t2 ⇒ Ui 6⊥ Ti (usually

with observational data)

(Section 1, case 2))

What to do in order to identify a causal object?

1 Exploit natural experiments: treatment or instrument assignment is as
good as random. (Section 1, cases 1) and 3))

2 Control for additional observed variables (components of Ui ) →
“selection on observables” or “conditional independence assumption”:
Ti is as good as randomly assigned conditional on Xi . (Section 1, case
4) - today’s section)
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Simple example: Potential Outcomes Model

Identification. (Cont.)

4) T randomly assigned if we condition on a set of observables X .
Idea: individuals select into treatment based on observable
characteristics; within a group X = x treatment is randomly assigned.

Called “selection on observables”.

Identifying assumptions:
I Selection on observables/conditional independence/conditional

unconfoundedness given X : {Yi (1),Yi (0)} ⊥ Ti | Xi

I In every group there are some people treated and some not treated
(overlap condition): P(Ti = 1|Xi = x) = E [Ti |Xi = x ] ∈ (0, 1)

Note: if Ti ⊥ Xi , then we’re back to random assignment of treatment:
{Yi (1),Yi (0)} ⊥ Ti
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Simple example: Potential Outcomes Model
Exercise: show that, under random assignment of T conditional on
observables X , one can point identify:

the conditional average treatment effect (CATE)

CATE ≡ E [Yi (1)− Yi (0)|Xi ]

= E [Yi (1)|Xi ]− E [Yi (0)|Xi ]

= E [Yi (1)|Xi ,Ti = 1]− E [Yi (0)|Xi ,Ti = 0]

= E [Yi |Xi ,Ti = 1]− E [Yi |Xi ,Ti = 0]

the average treatment effect (ATE)

ATE ≡ E [Yi (1)− Yi (0)]

= EX [E [Yi (1)− Yi (0)|Xi ]]

= EX [E [Yi (1)|Xi ]]− EX [E [Yi (0)|Xi ]]

= EX [E [Yi (1)|Xi ,Ti = 1]]− EX [E [Yi (0)|Xi ,Ti = 0]]

= EX [E [Yi |Xi ,Ti = 1]]− EX [E [Yi |Xi ,Ti = 0]]

= EX [E [Yi |Xi ,Ti = 1]− E [Yi |Xi ,Ti = 0]︸ ︷︷ ︸
CATE

)] = EX [CATE ]
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Simple example: Potential Outcomes Model

the average treatment effect on treated (ATET)

ATET ≡ E [Yi (1)− Yi (0)|Ti = 1]

= E [E [Yi (1)− Yi (0)|Xi ,Ti = 1]|Ti = 1]

= E [E [Yi (1)− Yi (0)|Xi ]︸ ︷︷ ︸
CATE

|Ti = 1] = EX |T =1[CATE ]

the average treatment effect on untreated (ATEU)

ATEU ≡ E [Yi (1)− Yi (0)|Ti = 0]

= E [E [Yi (1)− Yi (0)|Xi ,Ti = 0]|Ti = 0]

= E [E [Yi (1)− Yi (0)|Xi ]︸ ︷︷ ︸
CATE

|Ti = 0] = EX |T =0[CATE ]

the marginal distribution of potential outcomes Y (0) and of Y (1),
conditional on X , aka FY (1)|X (y) and FY (0)|X (y)
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Simple example: Potential Outcomes Model

the marginal distribution of potential outcomes Y (0), conditional on
being treated, aka, FY (0)|T =1(y)

FY (0)|T =1(y) = P(Y (0) ≤ y |T = 1)

= E [I(Y (0)≤y)|T = 1]

=∗ EX |T =1[E [I(Y (0)≤y)|T = 1,X ]]

= EX |T =1[E [I(Y (0)≤y)|T = 0,X ]]

=∗∗ EX |T =1

[
E

[I(Y≤y)(1− T )

1− p(X )
|X
]]

Note 1: ∗ uses the fact that Y (0) ⊥ T |X .
Note 2: ∗∗ uses E [I(Y≤y)(1− T )|X ] = E [I(Y≤y)|T = 0,X ](1− p(X ))
(show!)
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Simple example: Potential Outcomes Model
We can keep working to find a “nicer” expression with intuitive interpretation:

FY (0)|T =1(y) = EX |T =1

[
E

[
I(Y≤y)(1− T )

1− p(X )
|X
]]

=
∑

x

E

[
I(Y≤y)(1− T )

1− p(X )
|X
]
P(X |T = 1)

=
∑

x

E

[
I(Y≤y)(1− T )

1− p(X )
|X
]
P(T = 1|X )P(X )

P(T = 1)

=
∑

x

E

[
I(Y≤y)(1− T )

1− p(X )

p(X )

P(T = 1)
|X
]
P(X )

= EX

[
E

[
I(Y≤y)(1− T )

1− p(X )

p(X )

P(T = 1)
|X
]]

= E

[
I(Y≤y)(1− T )

1− p(X )

p(X )

P(T = 1)

]
= E

[
I(Y≤y)(1− T )

p(X )

P(T = 1)

1

1− p(X )

]
Note: don’t confuse p(X ) ≡ P(T = 1|X ) with P(X )!
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Simple example: Potential Outcomes Model
Propensity score:

p(Xi ) = P(Ti = 1|Xi )

Note 1: P(Xi ) is a random variable that takes on values ∈ [0, 1]; P(Xi = x) is a specific
value for this random variable, notably the probability of being treated if characterstic Xi

takes on value x .
Note 2: if Ti ∈ {0, 1}, then P(Ti = 1|Xi ) = E [Ti |Xi ]

Why useful? For estimation!

Identification step: instead of conditioning on Xi , condition on p(Xi ).

Curse of dimensionality : to justify selection on observables assumption, would want
to condition on many covariates X1,X2, ...,XK , but then very few observations (or
even none!) of both treated and untreated people within each group (there are as
many groups as combinations of values for the covariates {x1, x2, ..., xk}).

Two groups, aka, two combinations {x1, x2, ..., xk} and {x ′1, x ′2, ..., x ′k}, might have
the same propensity score:
p(Xi,1 = x1, ...,Xi,K = xK ) = p(Xi,1 = x ′1, ...,Xi,K = x ′K ), i.e.,
P(Ti = 1|Xi,1 = x1, ...,Xi,K = xK ) = P(Ti = 1|Xi,1 = x ′1, ...,Xi,K = x ′K )

So we can pool their observations if instead of conditioning on X1,X2, ...,XK , we
condition on p(X1,X2, ...,XK )
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Simple example: Potential Outcomes Model

Exercise: show that one can rewrite the ATE in the following way:

ATE ≡ E [Yi (1)]− E [Yi (0)] = E

[
Yi

Ti − p(Xi )

p(Xi )(1− p(Xi ))

]
We showed before: ATE ≡ EX [E [Yi |Xi ,Ti = 1]]− EX [E [Yi |Xi ,Ti = 0]]

Show that: E [Yi |Xi ,Ti = 1] = E
[

Yi Ti
p(Xi )
|Xi

]
E [YiTi |Xi ] = E [E [YiTi |Xi ,Ti ]|Xi ]

= E [TiE [Yi |Xi ,Ti ]|Xi ]

= 1× E [Yi |Xi ,Ti = 1]P(Ti = 1|Xi ) + 0× E [Yi |Xi ,Ti = 0]P(Ti = 0|Xi )

= E [Yi |Xi ,Ti = 1]p(Xi )

⇒ E [Yi |Xi ,Ti = 1] = E [Yi Ti |Xi ]
p(Xi )

= E
[

Yi Ti
p(Xi )
|Xi

]
Show that: E [Yi |Xi ,Ti = 0] = E

[
Yi (1−Ti )
1−p(Xi )

|Xi

]
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Simple example: Potential Outcomes Model

Therefore:

E [Y (1)] = EX [E [Yi |Xi ,Ti = 1]] = E

[
YiTi

p(Xi )

]
E [Y (0)] = EX [E [Yi |Xi ,Ti = 0]] = E

[
Yi (1− Ti )

1− p(Xi )

]
Intuition for E [Yi (0)] = E

[
Yi (1−Ti )
1−p(Xi )

]
:

Yi (1− Ti ) keeps the observations for those that are not treated, for which we observe
the potential outcome under no treatment, Yi (0). Units that have a small
P(Ti = 0|Xi ) = 1− p(Xi ) are “under-represented” in these observations, so we upweight
them with the inverse of 1− p(Xi ).

Last step is algebra:

ATE = E

[
YiTi

p(Xi )

]
− E

[
Yi (1− Ti )

1− p(Xi )

]
= E

[
Yi

Ti − p(Xi )

p(Xi )(1− p(Xi ))

]
Note: this exercise was proved slightly differently in lecture using the fact that, by

construction, Ti ⊥ Xi |p(Xi ). Check it out!
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Simple example: Potential Outcomes Model

There’s a fifth case that we talked about in class...

Identification. (Cont.)

5) Z is randomly assigned if we condition on a set of observables X .
Idea: individuals receive instrument (e.g., get draft letter) based on
observable characteristics; within a group X = x instrument is
randomly assigned.

Identifying assumption:
I Conditional independence of instrument:
{Yi (1),Yi (0),Ti (1),Ti (0)} ⊥ Zi | Xi
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Simple example: Potential Outcomes Model

Exercise (practice at home): show that, under random assignment of Z
conditional on observables X , one can point identify:

the conditional local average treatment effect (CLATE)

the local average treatment effect (LATE)

features of the distribution of covariates for compliers:
E [g(Xi )|Ti (1) > Ti (0)]
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Simple example: Potential Outcomes Model

Notice the analogies between the CATE and ATE under case 4), and the
CLATE and LATE under case 5):

ATE ≡ E [Yi (1)− Yi (0)] = EX [E [Yi (1)− Yi (0)]|Xi ] = EX [CATE ]

So by identifying CATE, we can also identify ATE.

LATE ≡ E [Yi (1)− Yi (0)|Ti (1) > Ti (0)] =

= EX

[
P(Ti (1) > Ti (0)|Xi )

E [P(Ti (1) > Ti (0)|Xi )]
E [Yi (1)− Yi (0)|Ti (1) > Ti (0),Xi ]

]
=

EX [W (Xi )CLATE ]

So by identifying CLATE, we can also identify LATE.
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Simple example: Potential Outcomes Model

ATE can be re-written with an expression that uses the propensity score:

ATE ≡ E [Yi (1)− Yi (0)] = E

[
Ti

p(Xi )
Yi

]
− E

[
(1− Ti )

1− p(Xi )
Yi

]
LATE can be re-written:

LATE = E

[
κ1

i

E [κ1
i ]
Yi

]
− E

[
κ0

i

E [κ0
i ]
Yi

]

κ0
i ≡ (1− Ti )

(1− Zi )− E [1− Zi |Xi ])

E [1− Zi |Xi ]E [Zi |Xi ]

κ1
i ≡ Ti

Zi − E [Zi |Xi ])

E [1− Zi |Xi ]E [Zi |Xi ]

...but this one has less of a clear intuition.
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BLP and what it identifies

If the object you’re identifying requires you to estimate a CEF, remember:

We know that CEFs are the same as BLPs (i.e., CEFs are linear) in
some special cases (normal distributions; discrete regressors)

Otherwise, might want to assume linearity of CEF

But if this assumption is wrong, then BLP will be identifying
something different than desired.
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BLP and what it identifies
Exercise: Problem Set 2, Exercise 1 walked you through an example of
conditions under which, in the context of the potential outcomes model
with covariates, BLP identifies or not the ATE.

Define the CEF of Yi given Xi , for treatment and control groups:

g0(Xi ) ≡ E [Yi |Ti = 0,Xi ]

g1(Xi ) ≡ E [Yi |Ti = 1,Xi ]

Define the BLP of Yi given Xi , for treatment and control groups:

gL
0 (Xi ) ≡ E ∗[Yi |Ti = 0,Xi ] = X ′i γ0

gL
1 (Xi ) ≡ E ∗[Yi |Ti = 1,Xi ] = X ′i γ1

Where:
γ0 ≡ E [XiX

′
i |Ti = 0]−1E [XiYi |Ti = 0]

γ1 ≡ E [XiX
′
i |Ti = 1]−1E [XiYi |Ti = 1]
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BLP and what it identifies
Exercise: Problem Set 2, Exercise 1 walked you through an example of
conditions under which, in the context of the potential outcomes model
with covariates, BLP identifies or not the ATE.

Recall that the ATE is the average (wrt to X) of the CATE:

ATE = EX [E [Yi (1)|Xi ]− E [Yi (0)|Xi ]]

If Yi (0),Yi (1) ⊥ Ti |Xi , then ATE is identified by:

ATE = EX [E [Yi |Ti = 1,Xi ]︸ ︷︷ ︸
≡g1(Xi )

−E [Yi |Ti = 0,Xi ]︸ ︷︷ ︸
≡g0(Xi )

]

I If CEF is linear, then it coincides with the BLP: g0(Xi ) = gL
0 (Xi ) and

g1(Xi ) = gL
1 (Xi ), so can use BLP to identify ATE:

ATE = EX [E∗[Yi |Ti = 1,Xi ]︸ ︷︷ ︸
≡g L

1 (Xi )

−E∗[Yi |Ti = 0,Xi ]︸ ︷︷ ︸
≡g L

0 (Xi )

]
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BLP and what it identifies

If Yi (0),Yi (1) ⊥ Ti |Xi , then ATE is identified by:

ATE = EX [E [Yi |Ti = 1,Xi ]︸ ︷︷ ︸
≡g1(Xi )

−E [Yi |Ti = 0,Xi ]︸ ︷︷ ︸
≡g0(Xi )

]

I If CEF is not linear, then can’t use BLP to identify ATE:

ATE 6= EX [E∗[Yi |Ti = 1,Xi ]︸ ︷︷ ︸
≡g L

1 (Xi )

−E∗[Yi |Ti = 0,Xi ]︸ ︷︷ ︸
≡g L

0 (Xi )

]

Instead, use BLP to identify a (sort of) weighted average of treatment
effects:

E [w1(Xi )Yi (1)|Ti = 1]− E [w0(Xi )Yi (0)|Ti = 0] =

EX [E∗[Yi |Ti = 1,Xi ]︸ ︷︷ ︸
≡g L

1 (Xi )

−E∗[Yi |Ti = 0,Xi ]︸ ︷︷ ︸
≡g L

0 (Xi )

]
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BLP and what it identifies

If Yi (0),Yi (1) ⊥ Ti , then BLP can be used to identify the ATE (as
long as you remember to include a constant)

ATE = EX [E ∗[Yi |Ti = 1,Xi ]︸ ︷︷ ︸
≡gL

1 (Xi )

−E ∗[Yi |Ti = 0,Xi ]︸ ︷︷ ︸
≡gL

0 (Xi )

]

Note: throughout this exercise, we’re running separate regressions on the
treated and control groups, so we have a BLP for each group. The last
questions asks you to pool both groups together and consider a BLP of Yi

on Xi and Ti .
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